In the areas of catalysis and organic chemistry, the development of versatile and efficient catalytic systems has long been a challenge, primarily due to the intricate relationship between ligands and transition metal centers. This study addresses this challenge by exploring the concept of ligand synergy to enhance the generality of catalytic systems, a crucial metric for their practical utility. By combining N-heterocyclic carbene (NHC) and phosphine ligands, we unveil a novel catalytic system that exhibits high level of generality in the Buchwald-Hartwig cross-coupling reaction. Our findings not only demonstrate the enhanced efficiency of this system, leading to the synthesis of valuable compounds with applications in organic electroluminescent devices and the pharmaceutical industry, but also shed light on the broader potential of ligand synergy in catalysis. Through machine learning analysis, we uncover the critical role of specific ligand properties, further paving the way for rational catalyst design.
Ссылка: J. Cat., 2024, 429, 115240.