Суператом (superatom) – это комбинация двух и более атомов, образующая устойчивый структурный фрагмент и обладающая уникальным набором физико-химических свойств. Системы, содержащие суператомы, открывают ряд новых возможностей как для создания новых материалов, так и для придания им уникальных свойств. Что касается процесса химических превращений, то в этом случае суператом участвует как одно целое и сохраняется по ходу реакции. С некоторой точки зрения, суператомы можно рассматривать как своеобразные элементы периодической системы в наноизмерении. Потенциальная область применения суператомов очень широка - целенаправленное изучение суператомных свойств активно ведется в катализе, науках о материалах, наноиндустрии и медицине.
Возможности современных компьютеров позволяют предсказать частицы, которые могут претендовать на звание «суператом» и даже описать некоторые их свойства. Как следствие того, что на сегодняшний день не существует универсального метода поиска и идентификации суператомов, на данный момент ведутся активные разработки специальных методик и подходов для их обнаружения. Процессу поиска способствует характерный состав суператомов – число атомов определенного типа, нередко упоминаемое как «магическое» и имеющее непосредственную зависимость от природы образующих элементов. Другая характерная особенность суператомов – высокая стабильность – помогает выделить их на фоне других молекул.
Рисунок 1. Исследование стабильности и распада различных соединений никеля в масс-спектрометре.
Для обнаружения суператомов ученые ИОХ РАН предложили использовать масс-спектрометрию. В ходе опыта исследуемый раствор подается в камеру ионизации масс-спектрометра через тонкий капилляр с помощью шприца. Затем этот раствор распыляется в виде спрея, и под действием высокого напряжения соединения ионизируются и далее превращаются в индивидуальные заряженные частицы (Рисунок 1). Этот процесс хорошо известен и носит название ионизации методом электрораспыления (ESI). Оказалось, что в таких условиях может наблюдаться образование частиц, содержащих суператомные ядра (superatomic core), которые идентифицируются при столкновении с молекулами азота во второй части прибора. За счет варьирования параметров столкновения можно оценить относительную стабильность и выделить наиболее стабильные ионы.
Рисунок 2. Фрагментация биметаллического иона в результате ESI-MS/MS эксперимента инициирует новые химические превращения с активацией C-C, C-H и C-O связей.
При масс-спектрометрическом изучении ацетонитрильного раствора хорошоизвестной соли - ацетилацетоната никеля, Ni(acac) 2 - было отмечено неожиданное свойство. После подробного анализа полученных спектров, авторы работы обнаружили необычайно устойчивый ион состава Ni2(acac)3+, содержащий ядро Ni2O2. В процессе бомбардировки всех наблюдаемых ионов молекулами азота (ESI-MS/MS эксперимент), удалось установить ряд относительной стабильности, исходя из количества атомов никеля, входящих в состав иона: Ni2 >> Ni3 ? Ni1. В результате серии экспериментов прослеживается тенденция значительно большей устойчивости биметаллического комплекса по сравнению с моно- и триметаллическим.
Интереснейшие химические процессы обнаружились при дальнейшем изучении комплекса с ядром Ni 2O2, содержащем два атома никеля и три ацетилацетонатных лиганда. Реакционная способность при соударении с азотом оказалась весьма необычной (Рисунок 2): в результате фрагментации образовались новые ионы, но ядро Ni2O2 осталось неизменным. Важнейшей находкой являются реакции, протекающие в результате активации C-C, C-H и C-O связей (ключевые процессы с точки зрения органической химии и катализа).
Одной из приоритетных задач современного катализа является модификация органических фрагментов (лигандов), не затрагивающая активный центр катализатора. В изученных соединениях это не так просто сделать, поскольку связи углерод-углерод, углерод-кислород и углерод-водород обычно являются более прочными, и разорвать их намного сложнее, чем слабые донорно-акцепторные связи металл-кислород в комплексных соединениях.
Наличие суператомного ядра может полностью изменить сложившееся представление о металлоорганических соединениях и о том, как мы можем их применять в дальнейших исследованиях. Эта находка позволит ученым открыть новые свойства хорошо известных соединений и использовать их для решения задач, которые раньше казались невозможными.
Результаты этих исследований очень важны для понимания фундаментальных основ строения и свойств комплексов металлов и могут способствовать разработке новых каталитических систем для тонкого органического синтеза. По словам профессора В.П. Ананикова: "Комплексы никеля очень дешевы и легкодоступны. На удивление, некоторые никелевые комплексы демонстрируют выдающуюся активность в катализе, которая заметно превосходит хорошо зарекомендовавшие себя, но намного более дорогие катализаторы на основе благородных металлов. В ближайшее время мы ожидаем все большего и большего применения комплексов никеля в катализе".
Первая часть исследования описана в статье "Exceptional Behavior of Ni 2O2 Species Revealed by ESI-MS and MS/ MS Studies in Solution. Application of Superatomic Core To Facilitate New Chemical Transformations" (авторы Dmitry B. Eremin, Valentin P. Ananikov) опубликована в журнале Organometallics Американского химического общества.
Сcылка: Organometallics, 2014; DOI: 10.1021/om500637k
Онлайн ссылка: http://pubs.acs.org/doi/abs/10.1021/om500637k