Новая жизнь старых молекул

В последние десятилетия исследователи преимущественно сфокусировали свое внимание на больших молекулах и молекулярных системах — ученые всего мира изучают протеомику, геномику, получают сложные белки, нуклеиновые кислоты, расшифровывают геномы целых организмов и проектируют новые субклеточные структуры. Увлечение этими важными и необходимыми для науки областями стало таким повсеместным, что невольно возникает вопрос: Среди всего этого мегамолекулярного многообразия есть ли в современной науке место для маленьких органических молекул? Вопрос возникает неспроста, поскольку старые и хорошо известные маленькие органические молекулы, также как и некоторые разделы классической органической химии, в какой-то мере были преданы забвению.

Это удивительно, но именно на фоне мегамолекул в наши дни стал снова возрождаться интерес к маленьким молекулам, которые несут в себе огромный незамеченный ранее потенциал для науки и промышленности. Ренессанс в этой области химии открыл новую жизнь для старых и хорошо известных маленьких молекул. Одной из таких молекул является ацетилен и производное ацетилена — карбид кальция, или СаС2.

Ничем не примечательные серые «камешки» кабида кальция являются ценнейшим веществом для науки и промышленности.

Всем известный с детства карбид кальция был впервые получен в 1862 г. Фридрихом Вёлером и произвел революцию в освещении Европы и США позапрошлого столетия. С появлением электрических источников освещения карбидные лампы перестали использовать из соображений безопасности. Однако количество производимого в мире карбида увеличивалось и к середине прошлого века достигло многих тысяч тонн. Это было связано с тем, что практически весь карбид шел на синтез ацетилена. С развитием катализа и нефтехимии ацетилен стали получать из более дешевых углеводородов, поэтому про карбид кальция постепенно забыли.

В нашей лаборатории был разработан удобный метод синтеза тиоэфиров (важных синтонов для органической химии и материаловедения) напрямую из карбида кальция, без выделения и хранения газообразного ацетилена. Реакция тиовинилирования происходит непосредственно в реакционной смеси. На первом этапе выделяется ацетилен из карбида кальция и воды, а на втором этапе к ацетилену происходит присоединение молекулы тиола. Оба процесса протекают в одной колбе и не требуют сложного оборудования. Применение карбида кальция не только принципиально упрощает и удешевляет процедуру синтеза, но и позволяет избежать проблем, связанных с транспортировкой, хранением, использованием газообразного ацетилена.

Приведенный в работе процесс дает наглядный пример, как заменить неудобный и опасный ацетилен на простой и дешевый карбид кальция. Выдвинутая в работе идея откроет новую страницу органической химии, если действительно удастся проводить ацетиленовую химию на основе карбидных технологий. Несомненно, в современной химии, пронизанной идеями безопасности, возобновляемости и упрощения процессов, для «маленького» карбида кальция всегда найдется место.

Публикации:

"Efficient Metal-Free Pathway to Vinyl Thioesters with Calcium Carbide as the Acetylene Source", Green Chem. 2016, 18, 482-486, DOI: 10.1039/C5GC01552A. Онлайн ссылка: http://dx.doi.org/10.1039/C5GC01552A

"Calcium Carbide: A Unique Reagent for Organic Synthesis and Nanotechnology", Chem. Asian J., 2016, 11, 965-976,DOI: 10.1002/asia.201501323. Онлайн ссылка: http://dx.doi.org/10.1002/asia.201501323

>