Recently, the dynamic nature of the metal-NHC bond has been proposed and the key role of chemical evolution in changing the nature of catalytically active sites is now an emerging topic. A comparative analysis of the ketone ?-arylation reaction with aryl halides, catalyzed by M/NHC complexes, was carried out in the present study and showed a fundamental difference in the behavior of the catalytic system for M = Ni and Pd. In situ evolution of Ni/NHC complexes with cleavage of the Ni-NHC bond leads to complete deactivation of catalytic systems, regardless of the nature of the aryl halide ArX (X = Cl, Br, I). However, upon Pd/NHC catalysis, the cleavage of the Pd-NHC bond causes deactivation only in the case of aryl chlorides. In the reactions of more active aryl iodides and aryl bromides, NHC-disconnected Pd species, formed as a result of the chemical transformation of Pd/NHC complexes, can provide effective catalysis in the arylation reaction under study. New catalytic systems based on Pd/NHC and Ni/NHC complexes generated in situ from stable imidazolium salts, IPrHCl and IPr*OMeHCl, and Pd(OAc)2 (0.1 mol%) or NiCl2Py2 (5 mol%) were developed for the selective ?-arylation of methylaryl ketones (Pd-catalysis) and other ketones less prone to aldol-crotonic condensation (Ni-catalysis). The present study has shown that the different effects of the metal-NHC bond cleavage should be taken into account for the efficient choice and optimization of catalytic systems to carry out arylation reaction with various aryl halides.
Reference: Ignore. Chem. Front., 2021, ASAP.
DOI: 10.1039/D0QI01411G