Green and Sustainable Route to Carbohydrate Vinyl Ethers for Accessing Bio-Inspired Materials with a Unique Microspherical Morphology

Rodygin K. S., Werner I., Ananikov V. P., ChemSusChem, 2018, 11, 292–298.
Ссылка на статью

Synthesizing chemicals and materials based on renewable sources is one of the main tasks of modern science. Carbohydrates represent excellent renewable natural raw materials, that are eco-friendly, inexpensive and biologically compatible. Herein, we developed a green vinylation procedure for carbohydrates using readily available calcium carbide. Various carbohydrates were utilized as starting materials resulting in mono-, di- and tetra-vinyl ethers in high to excellent yields (81-92 %). The synthesized bio-based vinyl ethers were utilized as monomers in free radical and cationic polymerizations. A unique combination of smooth surface and intrinsic microcompartments was achieved in the synthesized materials. Two types of bio-based materials were prepared involving microspheres and "Swiss cheese" polymers. Scanning electron microscopy with built-in ion beam cutting was applied to reveal the spatial hierarchical structures in three-dimensional space.

Ionic Liquids As Tunable Toxicity Storage Media for Sustainable Chemical Waste Management

Seitkalieva M. M., Kashin A. S., Egorova K. S., Ananikov V. P., ACS Sustainable Chem. Eng., 2018, 6, 719–726.
Ссылка на статью

Storage and handling of toxic wastes is a top-priority challenge for sustainable development and public health. In recent years, the risk of irreversible environmental pollution has been increasing gradually, necessitating the development of new concepts in this highly demanding area. Here, we report a flexible approach to address the problem using tunable ionic liquids as a carrier and storage medium for chemicals. Encapsulation in microscale tunable media surrounded by an inert ionic liquid facilitates the efficient capture of chemicals. The adaptive character of the designed microscale compartments opens new possibilities for the waste management of chemicals of a diverse nature. Real-time field-emission scanning electron microscopy was used to visualize the formation of microscale compartments upon the sequestration of chemicals in ionic liquids. Ionic liquids captured the chemicals better than traditional organic solvents or water; moreover, the chemicals subsequently could be effectively extracted for destruction or utilization. Our work presents a new model for the sustainable management of chemical wastes; the concept was evaluated for a number of multiton chemicals currently affecting our environment.

Calcium-Mediated One-Pot Preparation of Isoxazoles with Deuterium Incorporation

Ledovskaya M., Rodygin K.S., Ananikov V.P., Org. Chem. Front., 2018, 5, 226–231.
Ссылка на статью

In this work, a novel synthetic methodology for the one-pot preparation of isoxazoles directly from the reaction of calcium carbide with aldoximes is reported. Calcium carbide acts as a safe and inexpensive acetylene source and, in addition, as a source of the Ca(OH)2 base to enable the generation of nitrile oxide. Various 3-substituted isoxazoles were synthesized from the corresponding aldoximes in good yields (up to 95%) and a series of new deuterated 4,5-dideuteroisoxazoles were prepared.