08 February 2016

Graphene decharging and molecular shielding

Researchers studied carbon materials with defects on the surface—such defects represent an active species, which should be shielded. Indeed, the experiments demonstrated that the defect areas are quite reactive and retain high activity toward various molecules. However, as soon as the defects were covered with few layers of graphene flakes, the distribution of reactive centers became uniform (without localized reactivity centers typical for defect areas).

In other words, covering of the surface defects with graphene layers has decreased the influence of charged defects and rendered them "invisible" in terms of chemical interactions at the molecular level.

The article "Shielding the chemical reactivity using graphene layers for controlling the surface properties of carbon materials," was published in Physical Chemistry Chemical Physics journal (Royal Society of Chemistry).


More information: A. E. Sedykh et al. Shielding the chemical reactivity using graphene layers for controlling the surface properties of carbon materials, Phys. Chem. Chem. Phys. (2016). DOI: 10.1039/C5CP05586E

>